organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Seik Weng Ng

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.061 wR factor = 0.200 Data-to-parameter ratio = 16.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-Chloro-4-hydroxyanthraquinone

In the title crystal structure, $C_{14}H_7ClO_3$, the molecules are linked by weak intermolecular hydrogen bonds to form a one-dimensional chain.

Received 6 September 2005 Accepted 9 September 2005 Online 14 September 2005

Comment

1-Hydroxyanthraquinone in its deprotonated form should function as a bidentate chelate to metal ions. However, there is little interest in this class of ligands, and only a small number of metal complexes of 1-hydroxyanthraquinone and its derivatives have been reported to date (Ali *et al.*, 2005). A recent study has documented the structure of 1,4-dihydroxyanthraquinone (Zain & Ng, 2005). The title compound, (I), has a Cl substituent in the 4-position of 1-hydroxyanthraquinone (Fig. 1), and it exists in a nearly planar conformation.

The hydroxy group forms an intramolecular hydrogen bond. Adjacent molecules are linked by weak interactions (Table 1) into a chain motif (Fig. 2). Other chloroanthraquinones that have been reported are limited to 1-chloroanthraquinone (Klimasenko & Gol'der, 1969; Meng *et al.*, 1999) and 1,5-dichloroanthraquinone (Bailey, 1958; Nakata & Takaki, 1984; Wang, 1979) only.

Experimental

Crystals of 1-chloro-4-hydroxyanthraquinone were obtained by recrystallizing the commercially available compound from pyridine.

Crystal data C14H7ClO3 $D_x = 1.581 \text{ Mg m}^{-3}$ $M_r = 258.65$ Mo $K\alpha$ radiation Monoclinic, $P2_1/n$ Cell parameters from 1782 a = 7.4180(7) Å reflections b = 10.2724 (9) Å $\theta = 2.4 - 26.1^{\circ}$ $\mu = 0.35 \text{ mm}^{-1}$ c = 14.262 (1) Å T = 295 (2) K $\beta = 90.588 \ (2)^{\circ}$ V = 1086.7 (2) Å² Block, red $0.42\,\times\,0.34\,\times\,0.16$ mm Z = 4

O 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A plot of the molecule of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates a hydrogen bond.

Data collection

Bruker SMART area-detector	$R_{\rm int} = 0.030$
diffractometer	$\theta_{\rm max} = 27.1^{\circ}$
φ and ω scans	$h = -9 \rightarrow 9$
6405 measured reflections	$k = -13 \rightarrow 12$
2366 independent reflections	$l = -12 \rightarrow 18$
1306 reflections with $I > 2\sigma(I)$	
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.113P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.061$	+ 0.225P]
$wR(F^2) = 0.200$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
2366 reflections	$\Delta \rho_{\rm max} = 0.54 \ {\rm e} \ {\rm \AA}^{-3}$
140 parameters	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
01-H1···O2	0.82	1.87	2.569 (3)	143
$O1-H1\cdots Cl1^i$	0.82	3.16	3.655 (2)	122
$C4\!-\!H4\!\cdots\!O2^{ii}$	0.93	2.55	3.397 (3)	152
C4-H4···O2 ⁱⁱ	0.93	2.55	3.397 (3)	152

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

The two aromatic rings were refined as rigid hexagons of side 1.39 Å in order to raise the reflections-to-parameters ratio, as the crystal was not a strongly diffracting specimen. The H atoms were placed in calculated positions (C-H = 0.93 Å and O-H = 0.82 Å),

Figure 2

A plot showing the weak interactions (dashed lines) that link adjacent molecules of (I) into a chain.

and they were included in the refinement in the riding-model approximation, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C},O)$. The hydroxy group was rotated to fit the electron density.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The author thanks Mr Xiao-Long Feng of Sun Yat-Sen University for the diffraction measurements, and the University of Malaya for supporting this study.

References

- Ali, H. M., Abdul Halim, S. N., Koushik, S., Lajis, N. Hj., Basirun, W. J. & Ng, S. W. (2005). Acta Cryst. E61, m691–m692.
- Bailey, M. (1958). Acta Cryst. 11, 103-107.

Bruker (2000). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Klimasenko, N. L. & Gol'der, G. A. (1969). *Kristallografiya*, **14**, 694–695. (In Russian.)
- Meng, Q.-H., Liu, Z.-P., Huang, D.-Y. & Zhang, C.-G. (1999). J. Chem. Crystallogr. 29, 1197–1199.
- Nakata, K. & Takaki, Y. (1984). Osaka Kyoiku Daigaku Kiyo, Dai-3-bumon: Shizen Kagaku, Oyo Kagaku, **33**, 99–103. (In Japanese.)
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, P.-W. (1979). J. Appl. Cryst. 12, 239.
- Zain, S. M. & Ng, S. W. (2005). Acta Cryst. E61, o2921-o2923.